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Alpha-helical transmembrane proteins are essential to many biological processes,
such as transport, signaling, intracellular communication, cell recognition, and adhesion.
These proteins also comprise the majority of drug targets. However, because
experimentally determining the structures of these molecules is often slow and difficult,
relatively very limited experimental structural data for membrane proteinsis availablein
protein data banks. Therefore the ability to instead accurately predict the topology of
transmembrane proteinsisinherently useful. Any paper on the prediction of
transmembrane protein topology will begin by agreeing that the problem of
characterizing protein structuresis a critically important endeavor in computational
biology, and that it is one of the more difficult problems to solvel°. Accordingly, there
are many available programs that conduct such predictions utilizing several different
approaches. The strategies of these methods can generally be categorized into two types:
those that use a residue-based analysis to determine the likelihood of each amino acid to
appear in each protein region, and those whose goal isto match an overall model of a
protein to the given amino acid sequence?.

This paper explores five different methods for the prediction of transmembrane
protein topology and apha helices, in the chronological order that they were devel oped.
These five methods are: TopPred (1992), MEMSAT (1994), PHDhtm_ref (1996),
HMMTORP (1998), and TMHMM (1998). Next, the accuracy of these methodsis
examined, and the question of which is the superior of the fiveis discussed.

Algorithms

TopPred: Hydrophobicity and the Positive-Inside Rule

Gunnar von Heijne pioneered a ssmple method of transmembrane topol ogy
prediction in 19923, This method is the basis for the program TopPred (sometimes
referred to as TOPPRED or TOP-PRED), short for “topology prediction.” At the time of
the TopPred method' s development, the standard method for transmembrane topology
prediction was a simple hydrophobicity analysis. von Heijne s method utilizes and builds



upon this strategy, adding a step of charge-bias analysisto rank all possible structures
using the positive-inside rule. His method is highly successful at predicting the topol ogy
of bacteria inner membrane proteins.

The first step to reaching a prediction using the TopPred method isto compose a
list of all possible transmembrane segments in the given protein using hydrophobicity
analysis®. A hydrophobicity prdile isformulated using the GES-scale (Engelman et al.,
1986). von Heijne used atrapezoidal diding window (a parameter for calculating the
hydrophobicity prdile) in favor of the commonly-used triangular and rectangular
windows, since the trapezoid combined the other shapes respective strengths of noise
reduction and realism.

Candidate transmembrane segments are extracted from the hydrophobicity prdile
by identifying the highest peaks in hydrophobicity above a certain (fairly lenient) cutoff
(Heijne used a cutoff of 0.5 for this step) 3. Of the list of potential transmembrane
segments, those with a hydrophobicity of 1.0 or greater can be deemed “ certain”
transmembrane segments, while those with hydrophobicity between 0.5 and 1.0 remain
possible, but not ddinite, candidates. It isthis set of uncertainly classified segments that
the charge-bias screening step (to follow) worksto ddine. The cutoff numbers used in
the method were derived from analysis of transmembrane proteins with experimentally
verified topologies.

Next, alist of al possible topologies of the protein is automatically generated
using a computer program?. At this point, all the possible topologies must include every
ddinite transmembrane segment, but may either include or exclude each of the tentative
segments.

The next stage of the method is based on the positive-inside rule. The positive-
inside rule can be summarized as follows: transmembrane proteins tend to have a much
higher concentration of positively charged amino acids on the cytoplasmic side of the
membrane than on the periplasmic side (the periplasm is the space between the inner and
outer membranes of Gram-negative bacteria) 3. To discern whether a protein conforms to
the positive-inside rule, we look to the charge-bias. The charge-bias of aproteinisa
measure of the difference in charge between its cytoplasmic and periplasmic segments. A
more positive charge-bias indicates greater compliance with the positive-inside rule,
which is most often a harbinger of abetter prediction. Figure 1 illustrates supporting
evidence that the positive-inside rule holds for bacterial inside membrane proteins.
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Figure 3. Mean number of Lys+ Arg in evtoplasmic
[sti;rplﬁi bars) and periplasmic (open bars) polar segments
ag a function of the pu!-ﬂ'tinli of the segment (1st cyitio-
plasmic segment. 2nd cytoplasmic segment. ete., counting
from the N terminus) in a sample of 24 bacterial inner
membrane proteing with known topology.

Figure: Chart supporting the positive-insiderule, from von Heijne's 1992 paper introducing the prediction
method used by TopPred3.

With the positive-inside rule in mind, the charge-biasis calcul ated for each of the
contending topologies, which are then ranked in order of decreasing charge-bias®. Each
structure is oriented such that its more highly charged side faces the cytoplasm. The top-
ranked structure is chosen as the method' sfinal prediction of the protein’s true topol ogy.
Thisiswhere the positive-inside rule comes in; a structure with an erroneous number of
transmembrane segments has at least one polar domain on the incorrect side of the
membrane. Thiswould likely cause the false structure to have alesser charge-bias than
the true structure. In thisway the positive-inside rule can protect the TopPred method
from predicting an incorrect structure in most cases. Figure 2 depicts an example of how
the positive-inside rule can help distinguish between accurate and faulty topology
choices.
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Figure 4. (a) Hydrophobicity plot for the SecY protein.
The vpper and lower cutoffs are marked, A tentative
transmembrane segment with a mean hydrophobicity
falling between the 2 cutoffs is marked by an arrow.
{b) Two possible topologies for the SecY protein based on
the hydrophobicity plot. The putative transmembrane
segment is shown in black. The number of Arg+ Lys
residues is shown next to each polar segment. Note that
the correct alternative (bottom, including the putative
transmembrane segment) has a much higher charge-bias
than the incorrect one,

Figure: An example of how using charge-biases can help deter mine the best prediction between two candidate
structuress.

MEMSAT: Dynamic Programming

The server MEMSAT employs a transmembrane topology modeling method,
developed in 1994 by Jones, Taylor, and Thornton. This approach uses a set of log-
likelihood tables compiled from data on well-characterized transmembrane proteins, and
includes a dynamic programming algorithm that implements expectation maximization to



predict topology models®. Expectation maximization seeks to find a model which best
explains the observed data.

In order to conduct expectation maximization, first a statistical model is déined
which includes parameters for number of transmembrane segments, topology (delineates
whether the N-terminusisinside the cell or outside), length, and location of each segment
within the total protein sequence®. In this model there are five structural states (Figure 3):
inside loop (L), outside loop (L), inside helix end (H;), middle helix (Hr), and outside
helix end (Ho,). Thelength in residues of helix ends was arbitrarily set to 4.
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FiGURE 1: Structural states defined for a typical helical transmem-
brane protein.

Figure 3: structural statesfor the MEM SAT method*.

It iswell-known that cytoplasmic, transmembrane, and extracellular protein
segments each have differing observed biases toward particular amino acids, and this fact
can be used to derive atopology prediction from an amino acid sequence?. Quantifying
these biases using alog likelihood cal culation can leverage them for use in modeling
protein topologies. For each of the five structural states, the log likelihood ratios of each
of the 20 amino acids were formulated using the equation

s = In(g/p)
where s isthelog likelihood of amino acid i in a particular state; p; is the frequency of
amino acid i out of all theamino acidsin all the proteins of the data set; and g isthe
relative frequency of amino acid i in the given structural state. A score near to zero
indicates that the frequency of the amino acid in the given state is the same as the
expected frequency by chance alone. A positive ratio signifies higher than random
frequency, while a negative ratio implies a frequency lower than that obtained by chance.

Thelog likelihood scores are used as parameters to calculate a score indicating
whether a given protein sequence is compatible with a particular topology model“. For a
single residue, the score is dependent on the identity of the residue and in which of the
five structural statesit resides. In order to ddine the highest-scoring set of
transmembrane helix positions and lengths, MEM SAT uses a recursive dynamic



programming algorithm that is almost identical to the Needleman-Wunsch agorithms
used for pairwise sequence alignment.

Asin the Needleman-Wunsch algorithms, a score matrix is formulated (Figure 4)
to predict the best topology“. For any given protein, two scoring matrices must be
ddined in order to enumerate every possible topology model, since the N-terminus of the
protein can lie on either the cytoplasmic or extracellular side of the cell membrane. The
dynamic programming algorithm cal culates the highest-scoring path possible from the
matrices, and the corresponding topology is selected as the final prediction (Figure 5).
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FIGURE 4: A hypothetical score matrix for three transmembrane
helices. The upper matrix holds the highest achievable path score
for each cell, and the lower matrix stores the helix length which
permits this score.

Figure 4: The scoring matrix method employed by the MEM SAT prediction program?.
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FiGURE 5: Predicted structure and topology relating to the optimal
path shown in Figure 4.

Figure5: Thetranglation of the highest matrix scoreinto a state model of a predicted transmembrane protein®.



PHDhtm_ref: Neural Networks

Rost developed a method for identifying transmembrane helices in 1996 that
relies on the use of neural networks, named PHDhtm_ref5. The general ideaisto feed a
multiple sequence alignment to a system of layered neural networks.

The first step in the PHDhtm_ref method is to generate the multiple sequence
alignment, which should possess a high level of accuracy and contain a wide range of
homol ogous sequences for the method to perform optimally®. From there, the sequence
alignment and subsequent inputs are processed through several different levels. The
structural state of atransmembrane protein segment can be a helix, a strand, or aloop,
and the segment can either be transmembrane or non-transmembrane.

The primary level isaneural network whose input consists of aloca sequence
window of 13 adjoining residues and the global sequence®. This sequence-to-structure
network outputs the 1D structural state of the central residue in the input window.

The output of thefirst level serves asthe input to the secondary level, which is
another neural network®. This one is a structure-to-structure network with the same
output units asin thefirst level. Because the sample proteins used to train the networks
are selected randomly, the examples from one time step to the next are normally not
adjacent to one another in sequence, which inhibits the first level network’s ability to
learn length distributions. Thus the second network is necessary to incorporate
correlations between adjoining residues, which make predicted segments and helices of
realistic length possible. A visual representation of the PHDhtm_ref method up to this
point in the process can be viewed in Figure 6.
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Figure: Theworkflow of the PHDhtm_ref method for transmembrane topology predictions.

Thethird level is simply the arithmetic average over independently trained
networks. Some networks are trained on protein segment states in their natural
proportions, but this causes bias towards some states with high representation (such as



loops) over others that are less frequent (like transmembrane helices) 5. This “unbalanced
training” is complemented by the “balanced training” of other neural networks, wherein
the network is presented with a set of examples possessing even proportions of all the
states. Because one training method tends to overpredict a given state while the other
underpredicts, the average is a compromise designed to calculate the correct number of
segments for each state. This*jury decision” istypically a simple arithmetic mean over
four networks: level 1 unbalanced, level 1 balanced, level 2 unbalanced and level 2
balanced.

The fourth and final level issimply afilter to weed out impossibilities in predicted
topologies. It either splits or shortens transmembrane helices that are too long, and
lengthens or deletes those that are too short®. Once the predicted model has passed
through the filter, it is outputted as the final prediction.

HMMTOP -A Hidden Markov Model

In 1998, Tusnady and Simon devel oped a hidden Markov model prediction
method. This method, unnamed at the start, is the method used by the HMMTOP server,
and will therefore be referred to as“HMMTOP” or “the HMMTOP method” from this
point forward. Its creators described the method as being “based on the hypothesis that
the localizations of the transmembrane segments and the topology are determined by the
difference in the amino acid distributions in various structural parts of these proteins
rather than by specific amino acid compositions of these parts.®” Thus, the success of the
method provided both a new and fairly accurate prediction tool for transmembrane
protein topology, and a support for its creators hypothesis about the theory of
transmembrane protein topology itself.

The HMMTOP method uses a hidden Markov model to find the most probabl e of
all the possible topologies of a protein, which is a prediction for and hopefully a match
with the experimentally determined topology. HMMTOP sHMM is comprised of five
structural states: inside loop, inside helix tail, membrane helix, outside helix tail, and
outside loop®. A “loop” is ddined as a sequence of amino acids outside the membrane. A
“tail” is asection of amembrane helix that protrudes from the membrane into the
cytoplasm or extracellular matrix of the cell. A membrane helix is always sandwiched
between two tailsin the model. A tail can be immediately followed by either aloop or
another tail, forming a“short loop” comprised of two tails. Figure 7 providesa
visualization of these structural states.
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Figure 2. Structural states defined for a typical helical transmembrane protein. The five states are: inside loop (1),
inside tail (i), membrane helix (h), outside tail (o) and outside loop (O). Tails (thick lines) are thought to interact with
the inside or outside l:l;srts of the membrane, while loops (thin lines) do not. Two tails between helices can form a
short loop, but longer loops are formed by tail-loop-tail sequences.

Figure: Illustration and caption explaining the biological basisfor the HMMTOP model's five states'.

HMMTORP ddines two state types based on the observation that short loops (5-30
residues) and long loops (more than 30 residues) generally have different length
distributions®. These two state types are labeled non-fixed length (NFL) and fixed-length
(FL). The difference between the two state types is the number of possible transitions
from aNFL state versus a FL state; a NFL can be succeeded either by the same state,
which adds length to that state, or by atransition to the next state. Thisrdlectsthe
observed geometric length distribution of long loops, which can be of arbitrary length.
On the other hand, aFL state isdivided into MAXL states, which constrains its length
between MINL and MAXL. From the first MINL substates, the only possible transition
leads to the next substate, while between MINL and MAXL, asecond transition is
available to leave the current state entirely and move to the next one. The transitions
between the substates have varying probabilities. Loops are categorized as NFL states,
whiletailsand helicesare FL.

The creators of the HMMTOP method designed the progression from one state to
the next to follow the natural state progressions of transmembrane proteins. Figure 8
illustrates the state architecture of the HMM; notice that the possible transitions between
states do in fact rdlect the state transitions in a transmembrane protein like the example
pictured in Figure 7.



Loop

Qutside

Figure 3. Architecture of HMM
used for topology prediction. States
with the same transition matrices
are colored in the same way: white,
helix states; light gray, tail states;
dark gray, loop states. Rectangular
areas FL type states; hexagonal
ones, NFL type states. The obser-
vation-symbol probabilities used by
states are marked in each state. The
structure of substates in the case of
the FL type is drawn within states.
Loup Lines and arrows show the possible
transition bebtween states or sub-
states.

Inside

Figures: Figurerepresenting the basic HMM ar chitecture of the HMMTOP model, along with an explanation of
color-coding and shapesused in the figure.

Before the model can be used to make a prediction, preliminary estimates of
HMM parameters must be set. These can be derived either randomly or based on
predetermined values, and are then optimized for the given amino acid sequence or its
homologs®. Then the best-fitting state sequence is calculated given the HMM and its
parameters. The parameters the creators used to train the model were based on
transmembrane proteins with experimentally validated topologies, and could be derived
either from a single sequence or from multiple sequences; training with multiple
sequences tends to increase the model’ s accuracy during testing.

TMHMM —Another Hidden Markov Modd!:

Sonhammer, Von Heijne, and Krogh developed TMHMM in 1998. This method
is based on a different hidden Markov model with seven states rather than five, and can
distinguish between soluble and membrane proteins’.

Figure 9 represents the architecture of TMHMM’s model. In (A) each box
represents a section of the structure that models a particular region of a transmembrane



protein (helix caps, center of ahelix, areas near the membrane, and globular domains).
Each box with the same name in the diagram shares the same parameters®. There are two
different models for non-cytoplasmic loops, one for short and the other for longer loops.
Thisis because short and long loops are the two possible membrane entry mechanisms,
and the two types of loops have distinct properties from one another.

In turn, each region model contains a set of HMM states, which model the lengths
of their respective regions. (B) and (C) of Figure 9 illustrate state structure diagrams for
helix core, globular, loop, and cap regions. The arrows in the figure represent transitions
from one state to another that are acceptable according to the grammatical structure of
helical transmembrane proteins’. Each state in a submodel istied to specific amino acid
probabilities; these parameters are the same for all the states in one region, but the
parameters of different boxes are varyings.
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Figure9: (A) Theoverall structure of the TMHMM modelé. Each box represents a specific region of a
transmembrane protein. (B) Submodel of statesfor the helix coreregion. (C) Submodel of statesfor globular,
loop, and cap regions

The HMM istrained on a set of transmembrane proteins with known topol ogy,
including verified locations of transmembrane alpha-helices’. The total number of HMM



parameters tracked by the model is 216, which is significantly less than that of neural
network models, which usually incorporate parametersin the tens of thousands®.

TMHMM predicts transmembrane helices by calculating the most likely overall
topology based on the HMM. However, since there is often some uncertainty about the
location of the helices —whether they are embedded in the membrane, enclosed in the
cytoplasm, or in the extracellular matrix —all three of these probabilities can be used to
display alternative topologies and there relative probabilities’ (see Figure 10).
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Figure 2. Posterior probabilities
for a single sequence. The posterior
probability  for  transmembrane
helix, inside, or outside displayed
for the gluconate permease 3 from
E. coli (SWISS-PROT entry
GNTP_ECOLI), for which the struc-
ture is unknown. Some parts of the
protein  are re-lau-iv.fna-lfeS certain,
whereas other parts are less certain,
It is unclear, for instance whether
there are one or two transmem-

brane segments between amino acid 100 and 150, and between 325 and 375, This uncertainty is also reflected in a
total uncertainty in which side the loops are (inside or outside) between 150 and 325. For this protein the single most
probable topology turms out to have two helices in both of these regions giving 13 transmembrane helices in total,
and this prediction turns out to be essentially identical to the annotation in SWIS5-PROT. However, the posterior
probability plot shows that the topology with only one helix in these regions (11 in total) is a quite likely alternative,
whereas a topology with 12 or 14 transmembrane helices is not so likely because it would fit badly with the posterior
probabilities of inside/outside in the two ends of the protein. In Klemm ef al. (1996) 14 transmembrane helices are
predicted for this protein; three helices are predicted in the region beween 100 and 150.

Figure 10: Figure and caption illustrating the concept of posterior probabilities, wherein all three probabilities
of alpha-helix location are considered when predicting the overall protein topology”.

One bendit conferred by the use of a hidden Markov model is TMHMM'’s ability
to model the length of atransmembrane helix”. The distribution of alpha-helix core
lengths in transmembrane proteins with known structure ranges from 5 to 25 residues
long. The helix length possibilitiesin TMHMM’s model precisely mirror this biological
rule, asis evident from the helix core model in Figure 1 (B). All helix core lengths
produced by the model are between 5 and 25, and whole helices are between 15 and 35

residues in length when the two caps are added®.

The model’ s accuracy stems from the fact that it is a close mapping of biological
realities. Not only does TMHMM take into account helix length, but it can also
incorporate hydrophobicity, charge bias, and grammatical limitations, all in asingle

integrated model”.



Accuracy of Methods

Each developer or team of developers, in their introductory papers, presents a test
of their methods and reports on estimated accuracy. These reports are presented here,
followed by a discussion of true accuracy measured by outside parties.

von Heijne tested his TopPred method on bacterial inner membrane proteins
whose sequences and topologies were experimentally well ddined. It correctly
predicted the overall topologies of 23 out of 24 proteins (96% accuracy), and identified
all 135 transmembrane segments from the sample, plus one overprediction.

The MEMSAT method successfully predicted 64 out of 83 entire topol ogies tested
(yielding an accuracy of about 77%), including 34 correct of 37 complex multispanning
proteins®.

With the PHDhtm_ref method, Rost was able to correctly predict 365
transmembrane helices out of 380 helicesin 69 test proteins®. This corresponds to an
approximate accuracy of 96%. Tested the opposite way for overprediction, given 278
globular non-transmembrane proteins, PHDhtm_ref only predicted 14 incorrect
transmembrane helices.

HMMTORP achieved about 96% average accuracy in predicting transmembrane
helices in data sets, and was able to predict the overall topology correctly in the same
data sets with an average accuracy of 85%°.

The creators of the TMHMM method indicate that, in cross-validated tests on sets

of 83 and 160 proteins with known topology, their method was successful in predicting
the entire topology of a protein 85% of the time for both data sets® (Figure 11).

Table 1. Results on various data sets using HMM for topology prediction

No. of transmembrane helices No. of correct proteins
Data set Nops Npra Near Oy () Qs Ny N Ny Qr (%)
H3TMP 3db 353 344 YH.4 G449 83 74 72 87
45TMP 194 187 1594 992 946 47 45 43 41
prok TP 262 204 2549 YB35 faicks] 44 ] 32 73
Total ] 708 694 987 942 158 143 135 #5
Nogw Ny and N are the number of observed, predicted and correctly predicted transmembrane helices, respectively;
T c P ¥ P P ¥
Qe =100+ /(N /Nots) - (Nooe /Npaa ) Nyoree N and Ny are the number of proteins in the data sets, the number of proteins for

which all transmembrane segments were predicted correctly, and the number of proteins for which both the topology and the trans-
membrane segments were predicted correctly, respectively. (, is the per residue accuracy.

Figure: reported test resultsfor TMHM M,

The developers of TMHMM, when testing their model, also tested other methods
using the same data sets®, and a resulting table of accuracy is provided in Figure 12. Four
out of the five approaches studied in this paper are included; only HMMTOP was left out.
Not surprisingly, the three other methods tested against TMHMM all performed more
poorly than the multi-sequence version of TMHMM in predicting overall topologies, and



all did worse in these tests than in those performed by their own developers (60% vs.
96% for TopPred, 65% vs. 77% for MEMSAT, and 81% vs. 96% for PHDhtm_ref).

Table 2. Prediction accuracy of various algorithms on various data sets

No. of transmembrane helices No. of correct proteins
Data set Method N N N O (%) MNror Np Nyr Oy (%)
BITMF [OPFRED 346 381 336 925 B3 54 54 65
MEMSAT 351 336 Y64 By 65 78
HMM, 358 342 97.2 &8 &6 80
PHDhtm_ref 351 342 98.1 75 73 B&
HMM, .. 353 344 98.4 74 72 87
ABTMF MEMSAT 194 174 165 BB 47 26 23 49
[OPPRED 200 193 8.0 40 25 53
HIVIM, 198 192 98.0 40 39 B3
HMM, 197 194 992 45 43 91
PHDhtm_ref 192 192 995 45 42 89
prokTMP  PHDhtm_ref 262 259 254 97.5 44 31 28 6d
MEMSAT 255 250 96.7 33 29 66
TOPFRED 264 255 7.0 32 30 68
HMM, 264 258 98.1 36 30 68
HMM,,_,.. 264 259 985 a8 a2 73
Total [OPPRED 698 740 6E1 94,8 158 112 95 60
MEMSAT 673 647 94.4 114 103 63
HMM, 714 689 976 131 124 78
PHDhtm_ref 699 5] 98.1 136 128 Bl
HMM, . 709 694 98.7 143 135 85

References for methods are as follows: TOPPRED (von Heijne, 1992), MEMSAT (Jones ef al., 1994), PHDhtm_ref (Rost ef al., 1996),
HMM, hidden Markov model used on single sequence information in this article, HMM,,..,, hidden Markov model used on multiple
sequence information in this article. The meanings of the columns are the same as in Table 1,

Figure: Accuracy of TopPred, MEM SAT, PHDhtm_ref, and TMHM M, as measur ed by the developer s of
TMHMME,

Which of these methods is really the most precise, and why are there
discrepanciesin reported accuracy? Rost contends that many creators of prediction
methods tend to overstate their models accuracies by using questionable or biased testing
procedures, such as using only tens of proteinsin sample sets used to estimate accuracy®,
and indeed most of the devel opers of methods studied here are guilty of using such small
sample sizes.

Theinconsistency in general stems from the fact that there is no standard data set
or procedure for testing the prediction methods. Viklund and Eloffson agree, stating,
“Differences between the evaluations are due to what is being measured (per residue
accuracy, per protein accuracy, etc.) and perhaps more important, the composition of the
data set used in the comparison, which may be more or less similar to the data set for
which a particular method has been optimized.?”

Even when tested by an outside party with standardized data setsin order to more
robustly determine the superior method, none of the prediction programs surfaced as the
clear winner. Chen et al. found that “some methods are better; none are clearly best... no
method(s) performed consistently better than al others by more than one standard error.®”
The fact that no model significantly outperformed all the othersis a clue that the
“perfect” prediction method is still on the horizon.

Although no method can be ddinitively proclaimed as the best for all cases, some
types of models do seem to be on the right track. 1n a 2004 study, Viklund and Eloffson
found that HMM methods (such as TMHMM and HMMTOP) were generally more
accurate than residue prdiling strategies utilized by earlier programs?. When these
HMMs were trained on multiple sequences, and when evolutionary information was
additionally accounted for, these methods performed even better.
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